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Abstract— Users of a Web site usually perform their interest-
oriented actions by click-ing or visiting Web pages, which are 
traced in access log files. Clustering Web user access patterns 
may capture common user interests to a Web site, and in turn, 
build user profiles for advanced Web applications, such as 
Web caching and prefetching. The conventional Web usage 
mining techniques for clustering Web user sessions can 
discover usage patterns directly, but cannot identify the latent 
factors or hidden relationships among users' navigational 
behavior. In this paper, we propose an approach based on a 
vector space model, called Random indexing, to discover such 
intrinsic characteristics of Web users' activities. The 
underlying factors are then utilized for clustering individual 
user navigational patterns and creating common user profiles. 
The clustering results will be used to predict and prefetch Web 
requests for grouped users. We demonstrate the usability and 
superiority of the proposed Web user clustering approach 
through experiments on a real Web log file. The clustering and 
prefetching tasks are evaluated by comparison with previous 
studies demonstrating better clustering performance and 
higher prefetching accuracy. 

Keywords— Web user clustering, User behavior, Random 
Indexing, Web prefetching. 
 

I. INTRODUCTION 
The World Wide Web [1] continues to grow at an 
astounding rate in both the sheer volume of traffic and the 
size and complexity of web sites. The complexity of tasks 
such as web site design, web server design, and of simply 
navigating through a web site have increased along with 
this growth. An important input to these design tasks is the 
analysis of how a web site is being used. Usage analysis [2] 
includes straightforward statistics, such as page access 
frequency, as well as more sophisticated forms of analysis 
such as finding the common traversal paths through a web 
site. 
Web users may exhibit various types of behaviors 
associated with their information needs and intended tasks 
when they are navigating a Web site which are traced in 
Web access log files. There are mainly two issues regarding 
these user behaviors. First issue is web users are given 
unique identification each time when they log on to the web. 
This becomes difficult to identify each user which rises to 
the solution of assigning a specific identifier for each user 
that uniquely identifies him every time he logs on to the 
web.     
Second issue is searching for the information according to 
user’s frequent need and intention which is becoming 
difficult. As a result, it is taking lot of time to find their 
frequently needed information which lead to the branch of 
web usage mining. Some of the data mining algorithms that 
are commonly used in web usage mining are association 
rule generation, clustering and sequential pattern generation. 
We should be able to detect more compact or well-

separated user groups. Based on common profiles of these 
detected clusters or groups, prediction and pre-fetching user 
requests can be done with encouraging results. 
 

II. THEORITICAL SURVEY 
Clustering in Web usage mining is used to group together 
items that have similar characteristics, and user clustering 
results in groups of users that seem to behave similarly 
when navigating through a Web site. Some standard 
techniques of date mining such as fuzzy clustering [3] 
algorithms, first-order Markov models [4] and the 
Dempster-Shafer theory [5] have been introduced to find 
latent factors [14] by modelling Web users’ navigation 
behavior and to cluster users based on Web access logs. 
Generally, these techniques capture stand alone user 
behaviors at the page view level.  

The common procedure of Web user clustering based 
on user navigational patterns and their behaviour is 
illustrated below and shown in the Fig 1: 
A.Fuzzy Clustering: 
In hard clustering, data is divided into distinct clusters, 
where each data element belongs to exactly one cluster. 
In fuzzy clustering [3] (also referred to as soft clustering), 
data elements can belong to more than one cluster, and 
associated with each element is a set of membership levels. 
These indicate the strength of the association between that 
data element and a particular cluster. Fuzzy clustering is a 
process of assigning these membership levels, and then 
using them to assign data elements to one or more clusters. 

 
Fig. 1 Generic cluster formation flow 
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Problems: 
 The algorithm minimizes intra-cluster variance as 

well, but has the same problems as k-means; the 
minimum is a local minimum, and the results 
depend on the initial choice of weights. 

 Using a mixture of Gaussians along with 
the expectation-maximization algorithm is a more 
statistically formalized method which includes 
some of these ideas: partial membership in classes. 

 Fuzzy c-means has less accuracy of clustering 
under noise.  

B.First-Order Markov Models: 
Markov model [4] and clustering are two frameworks used 
for predicting the next page to be accessed by the Web user. 
Markov models are becoming very commonly used in the 
identification of the next page to be accessed by the Web 
site user based on the sequence of previously accessed 
pages.  
Let P = {p1, p2, …, pm} be a set of pages in a Web site. Let 
W be a user session including a sequence of pages visited 
by the user in a visit. Assuming that the user has 
visited l pages, then prob(pi|W) is the probability that the 
user visits pages pi next. Page pl+1 the user will visit next 
is estimated by: 

 
Problems: 
However, longer k causes the following two problems: The 
coverage of model is limited and leaves many states 
uncovered; and the complexity of the model becomes 
unmanageable. Therefore, the following are three modified 
Markov models for predicting Web page access. 

 All kth Markov model: This model is to tackle the 
problem of low coverage of a high order Markov 
model. For each test instance, the highest order 
Markov model that covers the instance is used to 
predict the instance.  

 Frequency pruned Markov model: Though all 
kth order Markov models result in low coverage, 
they exacerbate the problem of complexity since 
the states of all Markov models are added up. The 
removal of these low frequency states affects the 
accuracy of a Markov model. However, the 
number of states of the pruned Markov model will 
be significantly reduced. 

 Accuracy pruned Markov model: Frequency 
pruned Markov model does not capture factors that 
affect the accuracy of states. A high frequent state 
may not present accurate prediction. When we use 
a means to estimate the predictive accuracy of 
states, states with low predictive accuracy can be 
eliminated. One way to estimate the predictive 
accuracy using conditional probability is called 
confidence pruning. Another way to estimate the 
predictive accuracy is to count (estimated) errors 
involved, called error pruning. 

C.Dempster-Shafer theory: 
Dempster-Shafer’s theory [5] of combining evidence has 
attracted considerable attention as a promising methodfor 
dealing with some problems arising in combining of 
evidence and data fusion. It starts by assuming a Universe 
of Discourse U, also called Frame of Discernment, which is 

a set of mutually exclusive alternatives. The frame of 
discernment can consist of the possible values of an Iatt 
tgriibvuetse .t o each subset A of U a basic probability 
assignment (bpa) m(A), which represents the strength of 
some evidence. For the empty set, m is 0; the sum of m over 
all subsets of U is 1. That is:  
 

 
 
 The basic probability assignment m is referred to as mass 
distribution to distinguish it from the probability 
distribution. 
Problems: 
This work still has several research issues, which we plan to 
address in the future. First, usage data by itself is not 
sufficient for recommendation. The personalization and 
recommendation process needs to have specific knowledge 
about the particular domain to do anything besides filtering 
based on statistical attributes of the discovered rules or 
patterns. Another problem is the scalability problem. Usage 
data collection on the Web is incremental. Hence, there is a 
need for mining algorithms to be scalable. They should be 
able to take as input the existing data, and mined 
knowledge, as well as the new data, and develop a new 
model in an efficient manner. Our future work will address 
these problems. 
 

III. IMPLEMENTATION 
The main implementation process consists of 3 steps. They 
are data preprocessing, random indexing and clustering. 
This can be explained in Algorithm 1: as per the process, 
algorithm can be explained as follows: firstly, URLs are 
split into segments S and the users are formed as {U1, 
U2,..., Un}. Now a N*d context window is formed using 
random indexing. Then a clustering approach (k-means) is 
applied on the window producing a group of users having 
similar interest patterns. 
 
Algorithm 1: Random Indexing Based Clustering 
Input: User IDs, Session IDs, URLs 
Output: Common User Profile containing Common User 
Navigation Patterns 
1: Obtain the user interested set of URLs P= {URL1, 
URL2....URLm} from web access log. 
2: Based on P obtain a navigation set for individual users, U 
= {U1, U2, . . ., Un}, which contains pages requested by 
each user. 
3: Obtain n*d Context Window by implementing Random 
Indexing Approach 
4: Perform k-means clustering and obtain common user 
profiles containing set of users having similar interest 
patterns. 
 
A.Data preprocessing 
The first part of Web user cluster detection, called 
preprocessing [2], is usually complex and demanding. 
Generally, it comprises three domain dependent tasks: data 
cleaning, user identification, and session identification. 
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Step 1:  Data cleaning 
For the purpose of user clustering, all data tracked in Web 
logs that are useless, such as graphical page content (e.g. 
jpg and gif files) and common scripts (with filename 
sufixes such as js, css or cgi), which are not content pages 
or documents, need to be removed. In general, a user does 
not explicitly request all of the graphics that are on a Web 
page and automatically downloaded. Since the main intent 
of Web Usage Mining is to get a picture of the uses' 
behaviour, it does not make sense to include file requests 
that the user did not explicitly request. Duplicated requests 
are also filtered out in this step, leaving only one entry per 
page request. 
 
Step 2: User identification 
Identifying different users is an important issue of data 
preprocessing. There are several ways to distinguish 
individual visitors in Web log data which are collected from 
three main sources: Web servers, proxy servers and Web 
clients. The most obvious assumption is that a single user in 
Web logs acquired from the server and proxy sides are 
identified by the same IP address. However, this is not very 
accurate because, for example, a visitor may access the 
Web from different computers, or many users may use the 
same IP address (if a proxy is used). This problem can be 
partially solved by the use of cookies, URL rewriting, or the 
requirement for user registration. User identification from 
client-side logs is much easier because these logs are traced 
via different user IDs. Since we take a log file from the 
client side, users are identified according to their IDs. 
 
Step 3: Session identification 
After individual users are identified, the next step is to 
divide each user's click stream into different segments, 
which are called sessions. Most session identification 
approaches identify user sessions by a maximum timeout. If 
the time between page requests exceeds a certain limit of 
access time, we assume a user is starting a new session. 
Based on empirical investigations this time limit has been 
found to be 25.5 minutes. Many commercial products, 
however, use 30 minutes as a default timeout. Besides, web 
browsers may also request content on a regular time 
frequency based on requests from the page. For example, 
www.cnn.com uses the \http-equiv" html tag to indicate that 
the page should be refreshed every 30 minutes. We will 
also use 30 minutes in our investigations. 
B.Random indexing 
 Random Indexing (RI) [12], [15] is a word co-occurrence 
based approach to statistical semantics. RI uses statistical 
approximations of the full word co-occurrence data to 
achieve dimensionality reduction. This results in a much 
quicker running time and fewer required dimensions. 
Random Indexing technique can be described as a two-step 
operation: 
Step 1: A unique d-dimensional index vector is assigned 
and randomly generated to each context (e.g. each 
document or each word). These index vectors are sparse, 
high-dimensional, and ternary, which means that their 
dimensionality (d) is on the order of hundreds, and that they 
consist of a small number(€) of randomly distributed +1s 
and -1s, with the rest of the elements of the vectors set to 0. 

In our work each element is allocated with the following 
probability : 
                      +1 for the probability     (€/2)/d 
                       0 for the probability      d-€/d 
                      -1 for the probability      (€/2)/d 
Step 2: Context vectors are produced by scanning through 
the text. As scanning the text, each time a word occurs in a 
context, that context’s d-dimensional index vector is added 
to the context vector for the word. Words are thus 
represented by d-dimensional context vectors that are the 
sum of the index vectors of all the contexts in which the 
word appears. The Random Indexing technique produces 
context vectors by noting co-occurring events within a 
context window that defines a region of context around 
each word, and the number of adjacent words in a context 
window is called the context window size, l. For example, 
the term tn in a ‘2+2’ sized context window, cm, is 
represented by: 
          cm = [(wn−2)(wn−1)tn(wn+1)(wn+2)]. 
Here l = 2, and the context vector of tn in cm would be 
updated with: 
       Cm = R(wn−2) + R(wn−1) + R(wn+1) + R(wn+2), 
where R(x) is the random index vector of x. This process is 
repeated every time we observe tn in our data, adding the 
corresponding information to its existing context vector C. 
If the context cm is encountered again, no new index vector 
will be generated. Instead the existing index vector for cm 
is added to C to produce a new context vector for tn.the 
following algorithm 2 shows the 2 step process of random 
indexing including the URL generation and segment 
generation. {URL1, URL2, ....., URLn} are the URLs from 
the web access log after data preprocessing. {U1, 
U2,.....,Un} are the users and S is the one that contains 
segments of URLs. From these, obtain index vectors 
si(1,2, ...m) containing segments used by different URLs. 
As in next step context vectors are generated, these are done 
by G=(Si U Uj) =n × d matrix A = {u1, u2, . . . , un}T 
where each row as the context vector uj of each single user. 
 
Algorithm 2: context vector generation 
 
Input: User IDs, Session IDs, URLs 
 
Output: A n*d Context Window A 
1: Obtain the user interested set of URLs 

P={URL1,URL2....URLm} from web access log. 
2: Based on P obtain a navigation set for individual users, U 

= {U1, U2, . . ., Un}, which contains pages requested 
by each user. 

3: Obtain S which contains all the segments that have 
occurred in P by splitting all the URLs in the user 
interest page set, P, by ”/”. 

4: For each segment, obtain a d-dimensional index vector si 
(i = 1, 2, . . ., m, where m is the total number of 
segments). 

5: Scanning the navigation set U, for each segment 
appearing in one user, update its zero- initialised 
context vector uj (j = 1, 2, . . ., n, where n is the total 
number of users). 

6: G=(Si U Uj) =n × d matrix A = {u1, u2, . . . , un}T where 
each row as the context vector uj of each single user. 
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C. Single user pattern clustering 
After random indexing of a user's transaction data, the 
single user patterns in matrix A will be clustered by the k-
means clustering algorithm. The k-means clustering 
algorithm [6] partitions n observations into k clusters in 
which each observation belongs to the cluster with the 
nearest mean. It is a partition-based clustering approach and 
has been widely applied for decades of years. The k-means 
clustering technique can be described as follows: 
Firstly, k initial centroids are randomly chosen. Each data 
point is then assigned to the closest centroid, and each 
collection of points assigned to a centroid forms a cluster. 
The centroid of each cluster is then updated as the mean of 
points assigned to the cluster. The assignment and update 
steps are repeated until no point changes clusters, or 
equivalently, until the centroids remain the same. Euclidean 
distance is used in our k-means experiments. Here is the 
algorithm 3 that explains k-means clustering taking K as 
number of clusters, chosen cluster centers {z1, z2,... ,zk} 
and final clusters formed as result are placed into {C1, 
C2,....Ck}. 
 
Algorithm 3: K-Means Clustering  
Input: n*d Context Window A 
Output: Common User Profile containing Common User 
Navigation Patterns 
1: Choose a value for K, the total number of clusters. 
2: Randomly choose K points as final centers {z1, z2, , zk }. 
3: Perform clusters {C1, C2, , Ck} by assigning the 
remaining instances to their closest cluster center. 
4: Calculate a new cluster center for each cluster. 
5: Repeat steps 3-5 until the cluster centers do not change. 
 

IV. CLUSTER VALIDATION 
The problem of common clustering can be formally stated 
as follows. Given a sample data set X = {x1; x2; : : : ; xn}, 
determine a partition of the objects into k clusters 
C1;C2; : : : ;Ck. zi is the center of cluster Ci, which is 
represented by the average(mean) of all the points in the 
cluster. One of the most important issues of cluster analysis 
is the evaluation of clustering results to find the partitioning 
that best fits the underlying data. The procedure of 
evaluating the results of a clustering algorithm is known as 
cluster validity. 
 
A. Clustering validity measures 
In general terms, there are three approaches to investigate 
cluster validity. The first is based on external criteria, which 
evaluates the results of a clustering algorithm by comparing 
it to a pre-specified class label for the data set. The second 
is based on internal criteria, which evaluates the clustering 
results without any prior knowledge of the data sets. The 
third approach is based on relative criteria, which performs 
comparisons between cluster partitions by the same 
algorithm, that can be used to set various parameter values. 
There are two basic relative criteria proposed for clustering 
evaluation and selection of an optimal clustering scheme: 
Compactness and Separation. The third technique of 
clustering validity can also be used to choose the number of 
clusters in a data set. 
 

B. Methods for comparison 
We use the popular Web user clustering algorithm FCMdd  
as a comparison to RI-based Web user clustering. FCMdd is 
a fuzzy clustering based approach for Web user grouping 
and represents state-of-the-art using fuzzy clustering. The 
new optimisation based clustering algorithm called CAS-C  
is also employed for comparison. This method solves 
clustering problems from the perspective of chaotic 
optimisation and presents better Web user clustering results 
than the k-means clustering algorithm. Moreover, CAS-C 
represents an approach that differs from the other two, RI 
being a vector space based method and FCMdd being a 
fuzzy clustering method. 
 
V. CONCLUSION 
Previous methods focused on single user interested patterns 
which did not consider and find the hidden relationships 
between users. This paper focuses on discovering latent 
factors (hidden relationships) of users browsing behaviours 
using Random Indexing based Web Clustering that detects 
clusters of Web users according to their activity patterns 
acquired from access logs. Experiments are conducted to 
investigate the performance of Random Indexing in Web 
user clustering tasks. The experimental results show that the 
proposed RI-based Web user clustering approach could be 
used to detect more compact and well-separated user groups 
than previous approaches. Based on common profiles of 
detected clusters, prediction and prefetching user requests 
can be done with encouraging results. 
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