
Random Indexing Based Web User Clustering for
Faster Navigation

Dr.J.K.R Sastry, K. Ruth Ramya, M. Devi Kavya Priya
Computer Science Department, KL University

Vaddeswaram, Guntur, District, Andhra Pradesh, India, 522502

Abstract— Users of a Web site usually perform their interest-
oriented actions by click-ing or visiting Web pages, which are
traced in access log files. Clustering Web user access patterns
may capture common user interests to a Web site, and in turn,
build user profiles for advanced Web applications, such as
Web caching and prefetching. The conventional Web usage
mining techniques for clustering Web user sessions can
discover usage patterns directly, but cannot identify the latent
factors or hidden relationships among users' navigational
behavior. In this paper, we propose an approach based on a
vector space model, called Random indexing, to discover such
intrinsic characteristics of Web users' activities. The
underlying factors are then utilized for clustering individual
user navigational patterns and creating common user profiles.
The clustering results will be used to predict and prefetch Web
requests for grouped users. We demonstrate the usability and
superiority of the proposed Web user clustering approach
through experiments on a real Web log file. The clustering and
prefetching tasks are evaluated by comparison with previous
studies demonstrating better clustering performance and
higher prefetching accuracy.

Keywords— Web user clustering, User behavior, Random
Indexing, Web prefetching.

I. INTRODUCTION
The World Wide Web [1] continues to grow at an
astounding rate in both the sheer volume of traffic and the
size and complexity of web sites. The complexity of tasks
such as web site design, web server design, and of simply
navigating through a web site have increased along with
this growth. An important input to these design tasks is the
analysis of how a web site is being used. Usage analysis [2]
includes straightforward statistics, such as page access
frequency, as well as more sophisticated forms of analysis
such as finding the common traversal paths through a web
site.
Web users may exhibit various types of behaviors
associated with their information needs and intended tasks
when they are navigating a Web site which are traced in
Web access log files. There are mainly two issues regarding
these user behaviors. First issue is web users are given
unique identification each time when they log on to the web.
This becomes difficult to identify each user which rises to
the solution of assigning a specific identifier for each user
that uniquely identifies him every time he logs on to the
web.
Second issue is searching for the information according to
user’s frequent need and intention which is becoming
difficult. As a result, it is taking lot of time to find their
frequently needed information which lead to the branch of
web usage mining. Some of the data mining algorithms that
are commonly used in web usage mining are association
rule generation, clustering and sequential pattern generation.
We should be able to detect more compact or well-

separated user groups. Based on common profiles of these
detected clusters or groups, prediction and pre-fetching user
requests can be done with encouraging results.

II. THEORITICAL SURVEY
Clustering in Web usage mining is used to group together
items that have similar characteristics, and user clustering
results in groups of users that seem to behave similarly
when navigating through a Web site. Some standard
techniques of date mining such as fuzzy clustering [3]
algorithms, first-order Markov models [4] and the
Dempster-Shafer theory [5] have been introduced to find
latent factors [14] by modelling Web users’ navigation
behavior and to cluster users based on Web access logs.
Generally, these techniques capture stand alone user
behaviors at the page view level.

The common procedure of Web user clustering based
on user navigational patterns and their behaviour is
illustrated below and shown in the Fig 1:
A.Fuzzy Clustering:
In hard clustering, data is divided into distinct clusters,
where each data element belongs to exactly one cluster.
In fuzzy clustering [3] (also referred to as soft clustering),
data elements can belong to more than one cluster, and
associated with each element is a set of membership levels.
These indicate the strength of the association between that
data element and a particular cluster. Fuzzy clustering is a
process of assigning these membership levels, and then
using them to assign data elements to one or more clusters.

Fig. 1 Generic cluster formation flow

J.K.R. Sastry et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (4) , 2013, 541 - 545

www.ijcsit.com 541

Problems:
 The algorithm minimizes intra-cluster variance as

well, but has the same problems as k-means; the
minimum is a local minimum, and the results
depend on the initial choice of weights.

 Using a mixture of Gaussians along with
the expectation-maximization algorithm is a more
statistically formalized method which includes
some of these ideas: partial membership in classes.

 Fuzzy c-means has less accuracy of clustering
under noise.

B.First-Order Markov Models:
Markov model [4] and clustering are two frameworks used
for predicting the next page to be accessed by the Web user.
Markov models are becoming very commonly used in the
identification of the next page to be accessed by the Web
site user based on the sequence of previously accessed
pages.
Let P = {p1, p2, …, pm} be a set of pages in a Web site. Let
W be a user session including a sequence of pages visited
by the user in a visit. Assuming that the user has
visited l pages, then prob(pi|W) is the probability that the
user visits pages pi next. Page pl+1 the user will visit next
is estimated by:

Problems:
However, longer k causes the following two problems: The
coverage of model is limited and leaves many states
uncovered; and the complexity of the model becomes
unmanageable. Therefore, the following are three modified
Markov models for predicting Web page access.

 All kth Markov model: This model is to tackle the
problem of low coverage of a high order Markov
model. For each test instance, the highest order
Markov model that covers the instance is used to
predict the instance.

 Frequency pruned Markov model: Though all
kth order Markov models result in low coverage,
they exacerbate the problem of complexity since
the states of all Markov models are added up. The
removal of these low frequency states affects the
accuracy of a Markov model. However, the
number of states of the pruned Markov model will
be significantly reduced.

 Accuracy pruned Markov model: Frequency
pruned Markov model does not capture factors that
affect the accuracy of states. A high frequent state
may not present accurate prediction. When we use
a means to estimate the predictive accuracy of
states, states with low predictive accuracy can be
eliminated. One way to estimate the predictive
accuracy using conditional probability is called
confidence pruning. Another way to estimate the
predictive accuracy is to count (estimated) errors
involved, called error pruning.

C.Dempster-Shafer theory:
Dempster-Shafer’s theory [5] of combining evidence has
attracted considerable attention as a promising methodfor
dealing with some problems arising in combining of
evidence and data fusion. It starts by assuming a Universe
of Discourse U, also called Frame of Discernment, which is

a set of mutually exclusive alternatives. The frame of
discernment can consist of the possible values of an Iatt
tgriibvuetse .t o each subset A of U a basic probability
assignment (bpa) m(A), which represents the strength of
some evidence. For the empty set, m is 0; the sum of m over
all subsets of U is 1. That is:

 The basic probability assignment m is referred to as mass
distribution to distinguish it from the probability
distribution.
Problems:
This work still has several research issues, which we plan to
address in the future. First, usage data by itself is not
sufficient for recommendation. The personalization and
recommendation process needs to have specific knowledge
about the particular domain to do anything besides filtering
based on statistical attributes of the discovered rules or
patterns. Another problem is the scalability problem. Usage
data collection on the Web is incremental. Hence, there is a
need for mining algorithms to be scalable. They should be
able to take as input the existing data, and mined
knowledge, as well as the new data, and develop a new
model in an efficient manner. Our future work will address
these problems.

III. IMPLEMENTATION
The main implementation process consists of 3 steps. They
are data preprocessing, random indexing and clustering.
This can be explained in Algorithm 1: as per the process,
algorithm can be explained as follows: firstly, URLs are
split into segments S and the users are formed as {U1,
U2,..., Un}. Now a N*d context window is formed using
random indexing. Then a clustering approach (k-means) is
applied on the window producing a group of users having
similar interest patterns.

Algorithm 1: Random Indexing Based Clustering
Input: User IDs, Session IDs, URLs
Output: Common User Profile containing Common User
Navigation Patterns
1: Obtain the user interested set of URLs P= {URL1,
URL2....URLm} from web access log.
2: Based on P obtain a navigation set for individual users, U
= {U1, U2, . . ., Un}, which contains pages requested by
each user.
3: Obtain n*d Context Window by implementing Random
Indexing Approach
4: Perform k-means clustering and obtain common user
profiles containing set of users having similar interest
patterns.

A.Data preprocessing
The first part of Web user cluster detection, called
preprocessing [2], is usually complex and demanding.
Generally, it comprises three domain dependent tasks: data
cleaning, user identification, and session identification.

J.K.R. Sastry et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (4) , 2013, 541 - 545

www.ijcsit.com 542

Step 1: Data cleaning
For the purpose of user clustering, all data tracked in Web
logs that are useless, such as graphical page content (e.g.
jpg and gif files) and common scripts (with filename
sufixes such as js, css or cgi), which are not content pages
or documents, need to be removed. In general, a user does
not explicitly request all of the graphics that are on a Web
page and automatically downloaded. Since the main intent
of Web Usage Mining is to get a picture of the uses'
behaviour, it does not make sense to include file requests
that the user did not explicitly request. Duplicated requests
are also filtered out in this step, leaving only one entry per
page request.

Step 2: User identification
Identifying different users is an important issue of data
preprocessing. There are several ways to distinguish
individual visitors in Web log data which are collected from
three main sources: Web servers, proxy servers and Web
clients. The most obvious assumption is that a single user in
Web logs acquired from the server and proxy sides are
identified by the same IP address. However, this is not very
accurate because, for example, a visitor may access the
Web from different computers, or many users may use the
same IP address (if a proxy is used). This problem can be
partially solved by the use of cookies, URL rewriting, or the
requirement for user registration. User identification from
client-side logs is much easier because these logs are traced
via different user IDs. Since we take a log file from the
client side, users are identified according to their IDs.

Step 3: Session identification
After individual users are identified, the next step is to
divide each user's click stream into different segments,
which are called sessions. Most session identification
approaches identify user sessions by a maximum timeout. If
the time between page requests exceeds a certain limit of
access time, we assume a user is starting a new session.
Based on empirical investigations this time limit has been
found to be 25.5 minutes. Many commercial products,
however, use 30 minutes as a default timeout. Besides, web
browsers may also request content on a regular time
frequency based on requests from the page. For example,
www.cnn.com uses the \http-equiv" html tag to indicate that
the page should be refreshed every 30 minutes. We will
also use 30 minutes in our investigations.
B.Random indexing
 Random Indexing (RI) [12], [15] is a word co-occurrence
based approach to statistical semantics. RI uses statistical
approximations of the full word co-occurrence data to
achieve dimensionality reduction. This results in a much
quicker running time and fewer required dimensions.
Random Indexing technique can be described as a two-step
operation:
Step 1: A unique d-dimensional index vector is assigned
and randomly generated to each context (e.g. each
document or each word). These index vectors are sparse,
high-dimensional, and ternary, which means that their
dimensionality (d) is on the order of hundreds, and that they
consist of a small number(€) of randomly distributed +1s
and -1s, with the rest of the elements of the vectors set to 0.

In our work each element is allocated with the following
probability :
 +1 for the probability (€/2)/d
 0 for the probability d-€/d
 -1 for the probability (€/2)/d
Step 2: Context vectors are produced by scanning through
the text. As scanning the text, each time a word occurs in a
context, that context’s d-dimensional index vector is added
to the context vector for the word. Words are thus
represented by d-dimensional context vectors that are the
sum of the index vectors of all the contexts in which the
word appears. The Random Indexing technique produces
context vectors by noting co-occurring events within a
context window that defines a region of context around
each word, and the number of adjacent words in a context
window is called the context window size, l. For example,
the term tn in a ‘2+2’ sized context window, cm, is
represented by:
 cm = [(wn−2)(wn−1)tn(wn+1)(wn+2)].
Here l = 2, and the context vector of tn in cm would be
updated with:
 Cm = R(wn−2) + R(wn−1) + R(wn+1) + R(wn+2),
where R(x) is the random index vector of x. This process is
repeated every time we observe tn in our data, adding the
corresponding information to its existing context vector C.
If the context cm is encountered again, no new index vector
will be generated. Instead the existing index vector for cm
is added to C to produce a new context vector for tn.the
following algorithm 2 shows the 2 step process of random
indexing including the URL generation and segment
generation. {URL1, URL2,, URLn} are the URLs from
the web access log after data preprocessing. {U1,
U2,.....,Un} are the users and S is the one that contains
segments of URLs. From these, obtain index vectors
si(1,2, ...m) containing segments used by different URLs.
As in next step context vectors are generated, these are done
by G=(Si U Uj) =n × d matrix A = {u1, u2, . . . , un}T
where each row as the context vector uj of each single user.

Algorithm 2: context vector generation

Input: User IDs, Session IDs, URLs

Output: A n*d Context Window A
1: Obtain the user interested set of URLs

P={URL1,URL2....URLm} from web access log.
2: Based on P obtain a navigation set for individual users, U

= {U1, U2, . . ., Un}, which contains pages requested
by each user.

3: Obtain S which contains all the segments that have
occurred in P by splitting all the URLs in the user
interest page set, P, by ”/”.

4: For each segment, obtain a d-dimensional index vector si
(i = 1, 2, . . ., m, where m is the total number of
segments).

5: Scanning the navigation set U, for each segment
appearing in one user, update its zero- initialised
context vector uj (j = 1, 2, . . ., n, where n is the total
number of users).

6: G=(Si U Uj) =n × d matrix A = {u1, u2, . . . , un}T where
each row as the context vector uj of each single user.

J.K.R. Sastry et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (4) , 2013, 541 - 545

www.ijcsit.com 543

C. Single user pattern clustering
After random indexing of a user's transaction data, the
single user patterns in matrix A will be clustered by the k-
means clustering algorithm. The k-means clustering
algorithm [6] partitions n observations into k clusters in
which each observation belongs to the cluster with the
nearest mean. It is a partition-based clustering approach and
has been widely applied for decades of years. The k-means
clustering technique can be described as follows:
Firstly, k initial centroids are randomly chosen. Each data
point is then assigned to the closest centroid, and each
collection of points assigned to a centroid forms a cluster.
The centroid of each cluster is then updated as the mean of
points assigned to the cluster. The assignment and update
steps are repeated until no point changes clusters, or
equivalently, until the centroids remain the same. Euclidean
distance is used in our k-means experiments. Here is the
algorithm 3 that explains k-means clustering taking K as
number of clusters, chosen cluster centers {z1, z2,... ,zk}
and final clusters formed as result are placed into {C1,
C2,....Ck}.

Algorithm 3: K-Means Clustering
Input: n*d Context Window A
Output: Common User Profile containing Common User
Navigation Patterns
1: Choose a value for K, the total number of clusters.
2: Randomly choose K points as final centers {z1, z2, , zk }.
3: Perform clusters {C1, C2, , Ck} by assigning the
remaining instances to their closest cluster center.
4: Calculate a new cluster center for each cluster.
5: Repeat steps 3-5 until the cluster centers do not change.

IV. CLUSTER VALIDATION
The problem of common clustering can be formally stated
as follows. Given a sample data set X = {x1; x2; : : : ; xn},
determine a partition of the objects into k clusters
C1;C2; : : : ;Ck. zi is the center of cluster Ci, which is
represented by the average(mean) of all the points in the
cluster. One of the most important issues of cluster analysis
is the evaluation of clustering results to find the partitioning
that best fits the underlying data. The procedure of
evaluating the results of a clustering algorithm is known as
cluster validity.

A. Clustering validity measures
In general terms, there are three approaches to investigate
cluster validity. The first is based on external criteria, which
evaluates the results of a clustering algorithm by comparing
it to a pre-specified class label for the data set. The second
is based on internal criteria, which evaluates the clustering
results without any prior knowledge of the data sets. The
third approach is based on relative criteria, which performs
comparisons between cluster partitions by the same
algorithm, that can be used to set various parameter values.
There are two basic relative criteria proposed for clustering
evaluation and selection of an optimal clustering scheme:
Compactness and Separation. The third technique of
clustering validity can also be used to choose the number of
clusters in a data set.

B. Methods for comparison
We use the popular Web user clustering algorithm FCMdd
as a comparison to RI-based Web user clustering. FCMdd is
a fuzzy clustering based approach for Web user grouping
and represents state-of-the-art using fuzzy clustering. The
new optimisation based clustering algorithm called CAS-C
is also employed for comparison. This method solves
clustering problems from the perspective of chaotic
optimisation and presents better Web user clustering results
than the k-means clustering algorithm. Moreover, CAS-C
represents an approach that differs from the other two, RI
being a vector space based method and FCMdd being a
fuzzy clustering method.

V. CONCLUSION
Previous methods focused on single user interested patterns
which did not consider and find the hidden relationships
between users. This paper focuses on discovering latent
factors (hidden relationships) of users browsing behaviours
using Random Indexing based Web Clustering that detects
clusters of Web users according to their activity patterns
acquired from access logs. Experiments are conducted to
investigate the performance of Random Indexing in Web
user clustering tasks. The experimental results show that the
proposed RI-based Web user clustering approach could be
used to detect more compact and well-separated user groups
than previous approaches. Based on common profiles of
detected clusters, prediction and prefetching user requests
can be done with encouraging results.

REFERENCES
[1] Etzioni, O.: The world-wide Web: quagmire or gold mine?

Communications of theACM 39(11), 65–68 (1996)
[2] Cooley, R., Mobasher, B., Srivastava, J.: Data preparation for

mining world wideweb browsing patterns. J. Knowl. Inf. Syst. 1(1),
5–32 (1999)

[3] Krishnapuram, R., Joshi, A., Nasraoui, O., Yi, L.: Low-complexity
fuzzy relational clustering algorithms for web mining. IEEE
Transaction of Fuzzy System 4(9),596–607 (2003)

[4] Cao, L.: In-depth Behavior Understanding and Use: the Behavior
Informatics Approach.Information Science 180(17), 3067–3085
(2010)

[5] Cadez, I., Heckerman, D., Meek, C., Smyth, P., Whire, S.:
Visualization of Navigation Patterns on a Website Using Model
Based Clustering. Technical Report MSR-TR-00-18, Microsoft
Research (March 2002)

[6] Xie, Y., Phoha, V.V.: Web User Clustering from Access Log Using
Belief Function. In: Proceedings of K-CAP 2001, pp. 202–208
(2001)

[7] Hou, J., Zhang, Y.: Effectively Finding Relevant Web Pages from
Linkage Information. IEEE Trans. Knowl. Data Eng. 15(4), 940–
951 (2003)

[8] Paik, H.Y., Benatallah, B., Hamadi, R.: Dynamic restructuring of e-
catalog communities based on user interaction patterns. World Wide
Web 5(4), 325–366 (2002)

[9] Wan, M., Li, L., Xiao, J., Yang, Y., Wang, C., Guo, X.: CAS based
clustering algorithm for Web users. Nonlinear Dynamics 61(3),
347–361 (2010)

[10] Berendt, B.: Using site semantics to analyze, visualize, and support
navigation. Data Mining and Knowledge Discovery 6(1), 37–59
(2002)

[11] Ansari, S., Kohavi, R., Mason, L., Zheng, Z.: Integrating e-
commerce and data mining: Architecture and challenges. In:
Proceedings of ICDM 2001, pp. 27–34 (2001)

[12] Kanerva, P., Kristofersson, J., Holst, A.: Random Indexing of text
samples for Latent Semantic Analysis. In: Proceedings of the 22nd
Annual Conference of the Cognitive Science Society, p. 1036 (2000)

J.K.R. Sastry et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (4) , 2013, 541 - 545

www.ijcsit.com 544

[13] Sahlgren, M., Karlgren, J.: Automatic bilingual lexicon acquisition
using Random Indexing of parallel corpora. Journal of Natural
Language Engineering, Special Issue on Parallel Texts 6 (2005)

[14] Landauer, T., Dumais, S.: A solution to Plato problem: the Latent
Semantic Analysis theory for acquisition, induction and
representation of knowledge. Psychological Review 104(2), 211–
240 (1997)

[15] Kanerva, P.: Sparse distributed memory. The MIT Press, Cambridge
(1988)

[16] MacQueen, J.: Some Methods for Classification and Analysis of
Multivariate Observations. In: Proceedings of the 5th Berkeley

Symposium on Mathematical Statistics and Probability, pp. 281–
297 (1967)

[17] Halkidi, M., Vazirgiannis, M., Batistakis, Y.: Quality Scheme
Assessment in the Clustering Process. In: Zighed, D.A.,
Komorowski, J., Z˙ ytkow, J.M. (eds.) PKDD 2000. LNCS (LNAI),
vol. 1910, pp. 265–276. Springer, Heidelberg (2000)

[18] Cunha, C.A., Bestavros, A., Crovella, M.E.: Characteristics of
WWW Client Traces, Boston University Department of Computer
Science, Technical Report TR-95-010 (April 1995)

[19] The Internet Traffic Archive. http://ita.ee.lbl.gov/index.html
[20] Gorman, J., Curran, J.R.: Random indexing using statistical weight

functions. In: Proceedings of EMNLP 2006, pp. 457–464 (2006)

J.K.R. Sastry et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (4) , 2013, 541 - 545

www.ijcsit.com 545

